the farm

5 Ways to Encourage Pollinators

5 Ways to Encourage Pollinators
5 Ways to Encourage Pollinators

If it seems the world is abuzz about pollinators, it's for good reason: Pollinators do hugely important work that is irreplaceable, as we recently shared with you. When pollinators are healthy and happy, our natural world as a whole is healthier and happier, too. And when the fate of pollinators is in danger, our own is threatened as well. Small strides have been made. This year's beekeeper survey from the Bee Informed Partnership saw the second-lowest rate of annual colony loss in seven years. But one in three beehives was lost - for reasons largely beyond the control of individual farmers and beekeepers. This is why we all have to do our part.

While climate change, pesticide use and loss of habitat are major threats to our beloved bees, birds, butterflies and more, there are thankfully plenty of ways you can help. Since protecting pollinators is a core value at Gaia Herbs, we wanted to share some simple yet effective tips that you can implement in your own backyard.

Gaia Herbs is headquartered in Western North Carolina, in one of the most biodiverse regions in the country. Our 350 acres of organic land provide sanctuary for pollinators, as does the land of other organic farms, no-spray fields, native forests and perhaps even your own yard. We spoke to some local experts about how we can help pollinators all year long.

Devote Space to Pollinator-Friendly Plants

Let part of your lawn grow wild, with plants that attract and nourish pollinators. If space is an issue, a flowerbed or two - or even some pots on a balcony - can provide food and shelter for pollinators.

"Meadows provide a wide diversity in terms of floral resources (pollen and nectar) that are critical for pollinator diets," says Meghan Baker, an extension agent for North Carolina Cooperative Extension who specializes in small farms. "The various heights and structures of the plants themselves provide refuges for pollinators during extreme weather events, or when neighboring areas are exposed to pesticides. Different heights and types of plants also offer a multitude of nesting sites for pollinators as well as other beneficial insects. For example, the hollow stems of Joe Pye Weed are useful as nesting sites for many native bees." 

For those who don't have the space - or the time and energy - to plant a meadow, Dianne Tolman of Big Pine Native Gardens, suggests "creating islands of natural vegetation." Her nursery specializes in native culinary, medicinal and landscape plants and is based in Madison County, N.C. "I try to help a customer visualize creating a border of a diverse mix of native plants alongside their vegetable garden or in a green space to attract pollinators," says Tolman. "Everyone with a patch of earth can make a significant contribution towards sustaining local biodiversity. It is painstaking work to create a meadow, as you will need a site with the right soil type, adequate rainfall and a lot of luck. You cannot scatter out the contents of a 'meadow-in-a-can' mix and expect a flourishing, beautiful meadow. It's best to start with individual plants or seeds in a small area and work up from there."

Always Choose Plants that are Native to your Region

Awhile back, a cereal company's plan to promote pollinator health backfired when it was discovered that some of the free wildflower seeds it was offering were actually invasive species in certain areas of the country. So, while it's a great idea to plant wildflowers, make sure they're the right ones for your region.

The Audubon Society explains why it's so important to "choose local" to promote biodiversity: "The continental U.S. lost a staggering 150 million acres of habitat and farmland to urban sprawl, and that trend isn't slowing. The modern obsession with highly manicured 'perfect' lawns alone has created a green, monoculture carpet across the country that covers over 40 million acres."

"It's important to plant native plant species to support the ecology our native insects are tied to," says Jillian Wolf, AmeriCorps service member and outreach coordinator for the Organic Growers School in Asheville, N.C.. "Native bees in the U.S., for instance, are responsible for pollinating over $15 billion worth of agricultural products annually. They are in decline due to the loss of their natural habitats, and in turn, our natural environment suffers from the loss of these pollinators."

Monoculture farming (growing a single crop or raising one type of livestock) is one of the contributors to the decline in pollinators. "Pollinators need a diverse diet to maintain maximum health, just as we do," explains Baker. "The main goal should be to provide a variety of flowering plants that bloom from early spring through late fall. Many of our native plant species can fill in the 'bookends' of the blooming season, and our native plants are excellent at providing food and habitat for native pollinators. The primary caution would be to avoid invasive or exotic plants that have the potential to get out of control."

Most native insects require a native host plant to complete their life cycle, says Tolman, and that co-evolution is another reason growing native plants is extremely important. "Native plants co-evolved with native insects and wildlife, and they are deeply dependent on one another. The larvae of many butterflies and beetles will eat only native species. It is a web, and not a chain. If you cut down the Goldenrod, the Black Cherry, the Milkweed and other natives, you eliminate the larvae and starve the birds. Native insects cannot, or will not, eat non-native plants. I tell folks to plant a diverse selection with differing flowering times and a variety of flower shapes and colors, to encourage pollinator diversity. Local plants are like locally grown food: It's better to buy local and in season."

Her suggestions:

  • For hummingbirds, plant Cardinal Flower, Columbine and Indian Pink.
  • For seed-eating birds, plant Echinacea, Black-Eyed Susan and Sunflowers.
  • For bees, butterflies and birds, plant Mountain Mint, Bee Balm, Asters, Goldenrod, Ironweed and Joe Pye Weed.

Want more ideas? The Xerces Society for Invertebrate Conservation has a comprehensive region-by-region guide to pollinator conservation that includes appropriate plants. If you're local to our region, NC State has a great list of the top 25 pollinator plants.

Avoid Conventional Insecticides and Herbicides.

Pests are pesky, but they're a part of nature. "Pest" and "weed" are terms that are a matter of perspective. Choosing organic and sustainable methods to deter pests can ensure our beautiful flowerbeds and lush lawns are not harming the health of pollinators.

Before you buy any plants, make sure they haven't been treated with neonicotinoid pesticides. (This is another great reason to "buy local" so you can talk to the person who grew your plants.) In 2015, the journal Nature published two studies highlighting the impact of pesticides on honeybees. The first found that bees preferred sugar solutions laced with neonicotinoid pesticides (a type of pesticide that not only affects the social behavior of bees but also the survival of entire colonies) to plain sucrose solutions; the other found that the same type of pesticides "severely affected" physiology and reproductive anatomy of queen honeybees.

Many big-box stores have agreed to phase out their use over the next few years, but most still do sell plants that have been treated with these substances. Instead, choose small, local nurseries and seed companies that have not sprayed or treated their seeds and plants. Beyond both lethal and "sublethal" effects on pollinators, pesticides and herbicides can both reduce food supplies and have a synergistic effect, which in this case unfortunately means they have a greater effect on the whole hive or colony than on a single pollinator. In addition to pollinators, these substances can also affect other wildlife - and even humans.

Once you get your plants home, use alternative methods to keep pests in check. Choosing native plants, rotating crops, using companion planting methods (such as marigolds with tomatoes) and using beneficial insects and fungi can all help prevent the need for conventional insecticides and herbicides. Remember: One person's weed is often another's medicinal herb. Elbow grease also goes a long way; hand-weeding, picking insects off plants and rehoming them, hoeing and spraying plants with a water hose can also be alternatives to spraying.

"Pesticides are detrimental to pollinators," whether they're conventional or allowed for use in organic production and processing, says Baker. (This is why so many organic farms, including Gaia, rely on alternative methods, such as companion planting, to deter pests.) "Systemic pesticides pose the greatest risk. Products like horticultural oil or insecticidal soap do not have a residual effect, so while they would harm a native bee or butterfly if sprayed directly on the insect, once they dry the risk is greatly diminished."

Tolman cautions that the effects of spraying spread beyond their intended target. "They can and do affect more than the target pest," she says.

Help Pollinators Year-Round, Not Just During Spring and Summer

Sadly, pollinators tend to be out of sight, out of mind, We think of butterflies and bees during the warmer months when we see them fluttering and buzzing about, but as the leaves change color and winter arrives, they sometimes fade from memory. Pollinators need our support - in the form of food and habitat - even when we can't see them.

Few plants stay in bloom year-round, but you can ensure pollinators always have refuge nearby by building a seasonal planting list. Start with species that bloom in early spring and continue with plants that bloom until frost. "Witch Hazel, Spicebush, Goldenrod and Asters are examples of plants that provide pollen and nectar on the extreme ends of the flowering season," Baker says.

The adage "busy as a bee" holds true, as Tolman says some types are active year-round while others are active only from April to August. By wintertime, she says, "most insects will have collected and stored copious amounts of pollen by wintertime" - but it's still a good idea to plant some late-blooming pollinator-friendly plants and trees.

"Goldenrods are probably the most important late-season pollinator plants in our area," says Tolman. "They are the primary winter food source for honeybees and many other pollinators." Seek out "guides that categorize, by time of year, what native plants will be flowering at that time," recommends Tolman. "This enables the gardener to plant in succession so that they have something flowering all year round until the wintertime frost."

Mulch Carefully and Naturally

Mulching is a natural way to cut down on weeds and prevent erosion and moisture loss, but it can also impact pollinators' abilities to set up a home. A 2014 study by the American Society for Horticultural Science examined the effects of several common mulching methods - including black polyethylene, woodchips, shredded newspaper, shredded newspaper plus grass clippings and bare soil (the control group) - on the nests of pollinators like the squash bee. Of all the mulches tested, the newspaper-grass combo came out on top, improving the soil while also letting pollinators do their job.

"Many of the native bees in our area nest in the ground, and too much mulch can limit their habitat," says Baker. "Rather than avoiding mulch, pay attention to ensure that some ground can be accessed - such as in between rocks or under large clumping plants. This provides exposed soil for ground-nesting pollinators to utilize without compromising soil loss."

Tolman recommends going easy on the mulch and also leaving some bare ground for the native bees who dig holes around plants to raise their young. "While you're at it," she adds, "leave stumps, rotting logs and fallen organic material as well. These are all good places for pollinator insects to overwinter." 

These simple tips can help protect the health and well-being of the beloved pollinators who share this earth with us. Their secure future can help your own garden and land thrive, creating a ripple effect.

5 ways to Encourage Pollinators infographic

National Pollinator Week was designated in 2007 by the U.S. Departments of Agriculture and the Interior as a way to address "the urgent issue of declining pollinator populations." According to The Pollinator Partnership, "Pollinator Week has now grown into an international celebration of the valuable ecosystem services provided by bees, birds, butterflies, bats and beetles." 

In our region of Western North Carolina, both Asheville and Hendersonville have been designated Bee Cities, which are municipalities "making an impact in protecting pollinators by raising awareness, establishing and enhancing habitats, and celebrating the achievements of the volunteers leading the effort." Hendersonville has also declared June to be Pollinator Month.

REFERENCES:

  • 1. Gustavo F. Gonzales, "Ethnobiology and Ethnopharmacology of Lepidium meyenii (Maca), a Plant from the Peruvian Highlands", Journal List Evid Based Complement Alternat Med v.2012; 2012 PMC3184420. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184420/
  • 2. Luis G Valerio Jr, Gustavo F Gonzales, "Toxicological aspects of the South American herbs cat's claw (Uncaria tomentosa) and Maca (Lepidium meyenii) : a critical synopsis", Toxicol Rev . 2005;24(1):11-35. doi: 10.2165/00139709-200524010-00002. PMID: 16042502. https://pubmed.ncbi.nlm.nih.gov/16042502/
  • 3. H. O. Meissner,1 P. Mrozikiewicz,2 T. Bobkiewicz-Kozlowska,3 A. Mscisz,2 B. Kedzia,2 A. Lowicka,2 H. Reich-Bilinska,4 W. Kapczynski,5 and I. Barchia6, "Hormone-Balancing Effect of Pre-Gelatinized Organic Maca (Lepidium peruvianum Chacon): (I) Biochemical and Pharmacodynamic Study on Maca using Clinical Laboratory Model on Ovariectomized Rats", Journal List Int J Biomed Sci v.2(3); 2006 Sep PMC3614604. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614604/
  • 4. Eva Fries 1, Lucia Dettenborn, Clemens Kirschbaum, "The cortisol awakening response (CAR): facts and future directions", Int J Psychophysiol. 2009 Apr;72(1):67-73. doi: 10.1016/j.ijpsycho.2008.03.014.Epub 2008 Sep 30.. https://pubmed.ncbi.nlm.nih.gov/18854200/
  • 5. Nicolas C. Nicolaides 1, Alexandros N. Vgontzas 2, Ilia Kritikou 3, George Chrousos 4 Kenneth R Feingold 1, Bradley Anawalt 2, Alison Boyce 3, George Chrousos 4, Wouter W de Herder 5, Ketan Dhatariya 6, Kathleen Dungan 7, Jerome M Hershman 8, Johannes Hofland 9, Sanjay Kalra 10, Gregory Kaltsas 11, Christian Koch 12, Peter Kopp 13, Márta Korbonits 14, Christopher S Kovacs 15, Wendy Kuohung 16, Blandine Laferrère 17, Miles Levy 18, Elizabeth A McGee 19, Robert McLachlan 20, John E Morley 21, Maria New 22, Jonathan Purnell 23, Rakesh Sahay 24, Frederick Singer 25, Mark A Sperling 26, Constantine A Stratakis 27, Dace L Trence 28, Don P Wilson 29 , editors., "HPA Axis and Sleep", PMID: 25905298 Bookshelf ID: NBK279071. https://pubmed.ncbi.nlm.nih.gov/25905298/
  • 6. José Manuel Lozano Sánchez', Zoraida Axtle Serranol*, Julio Avilés Durán, Héctor Salvador Godoy Morales, Paola Berenice Merchand Álvarez, Ricardo Mera Mejía? Luis Felipe Montaño Estrada and Erika Patricia Rendón Huerta, "Peruvian Maca and Possible Impact on Fertility", Journal of Nutritional Health & Food Engineering. https://www.researchgate.net/profile/Jose-Manuel-Lozano-Sanchez/publication/317569911_Peruvian_Maca_and_Possible_Impact_on_Fertility/links/59494b03aca272a30c6cae11/Peruvian-Maca-and-Possible-Impact-on-Fertility.pdf
  • 7. A López-Fando 1, M P Gómez-Serranillos, I Iglesias, O Lock, U P Upamayta, M E Carretero, "Lepidium peruvianum chacon restores homeostasis impaired by restraint stress", Phytother Res . 2004 Jun;18(6):471-4. doi: 10.1002/ptr.1455.. https://pubmed.ncbi.nlm.nih.gov/15287072/
  • 8. Gustavo F. Gonzales *, "Ethnobiology and Ethnopharmacology of Lepidium meyenii (Maca), a Plant from the Peruvian Highlands", Evid Based Complement Alternat Med. 2012; 2012: 193496. Published online 2011 Oct 2. doi: 10.1155/2012/193496. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184420/
  • 9. José Manuel Lozano Sánchez', Zoraida Axtle Serranol*, Julio Avilés Durán, Héctor Salvador Godoy Morales, Paola Berenice Merchand Álvarez, Ricardo Mera Mejía? Luis Felipe Montaño Estrada and Erika Patricia Rendón Huerta, "Peruvian Maca and Possible Impact on Fertility", Journal of Nutritional Health & Food Engineering. https://www.researchgate.net/profile/Jose-Manuel-Lozano-Sanchez/publication/317569911_Peruvian_Maca_and_Possible_Impact_on_Fertility/links/59494b03aca272a30c6cae11/Peruvian-Maca-and-Possible-Impact-on-Fertility.pdf
  • 10. Maria Rosales-Hartshorn*, "Maca: Botanical Medicine from the Andes", Volume 1 : Issue 2 Article Ref. #: 1000AFTNSOJ1e001. https://www.openventio.org/Volume1-Issue2/Maca-Botanical-Medicine-from-the-Andes-AFTNSOJ-1-e001.pdf
  • 11. Natália da Silva Leitão Peres 1, Letícia Cabrera Parra Bortoluzzi, Leila Larisa Medeiros Marques, Maysa Formigoni, Renata Hernandez Barros Fuchs, Adriana Aparecida Droval, Flávia Aparecida Reitz Cardoso, "Medicinal effects of Peruvian maca (Lepidium meyenii): a review", Food Funct. 2020 Jan 29;11(1):83-92. doi: 10.1039/c9fo02732g.. https://pubmed.ncbi.nlm.nih.gov/31951246/
  • 12. Office of Communications, "How common is infertility?", Home- Health- A to Z List- Infertility and Fertility- About- How common is infertility?. https://www.nichd.nih.gov/health/topics/infertility/conditioninfo/common#f1
  • 13. ASRM, American Society for Reproductive Medicine., "In approximately 40 percent of infertile couples, the male partner is either the sole cause or a contributing cause of infertility", Home Infographic Gallery. https://www.reproductivefacts.org/resources/infographic-gallery/images/in-approximately-40-percent-of-infertile-couples-the-male-partner-is-either-the-sole-cause-or-a-contributing-cause-of-infertility/
  • 14. G F Gonzales 1, A Cordova, C Gonzales, A Chung, K Vega, A Villena, "Lepidium meyenii (Maca) improved semen parameters in adult men", Asian J Androl. 2001 Dec;3(4):301-3.. https://pubmed.ncbi.nlm.nih.gov/11753476/
  • 15. José Manuel Lozano Sánchez', Zoraida Axtle Serranol*, Julio Avilés Durán, Héctor Salvador Godoy Morales, Paola Berenice Merchand Álvarez, Ricardo Mera Mejía? Luis Felipe Montaño Estrada and Erika Patricia Rendón Huerta, "Peruvian Maca and Possible Impact on Fertility", DOI:10.15406/jnhfe.2017.06.00217. https://www.researchgate.net/publication/317569911_Peruvian_Maca_and_Possible_Impact_on_Fertility
  • 16. Daniel Nedresky; Gurdeep Singh., "Physiology, Luteinizing Hormone", Treasure Island (FL): StatPearls Publishing; 2022 Jan-.. https://www.ncbi.nlm.nih.gov/books/NBK539692/
  • 17. G F Gonzales 1, A Cordova, C Gonzales, A Chung, K Vega, A Villena, "Lepidium meyenii (Maca) improved semen parameters in adult men", Asian J Androl. 2001 Dec;3(4):301-3.. https://pubmed.ncbi.nlm.nih.gov/11753476/
  • 18. G F Gonzales, M Gasco, A Córdova, A Chung, J Rubio and L Villegas, "Effect of Lepidium meyenii (Maca) on spermatogenesis in male rats acutely exposed to high altitude (4340 m)", Instituto de Investigaciones de la Altura, and Departamento de Ciencias Biolo´gicas y Fisiolo´gicas Facultad de Ciencas y Filosofı´a, Universidad Peruana Cayetano Heredia, PO Box 1843, Lima, Peru (Requests for offprints should be addressed to G F Gonzales, Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, PO Box 1843, Lima, Peru; Email: iiad@upch.edu.pe). http://eplant.njau.edu.cn/maca/publication/Effect%20of%20Lepidium%20meyenii%20(Maca)%20on%20spermatogenesis%20in%20male%20rats%20acutely%20exposed%20to%20high%20altitude%20(4340%20m).pdf
  • 19. A López-Fando, M P Gómez-Serranillos, I Iglesias, O Lock, U P Upamayta, M E Carretero, "Lepidium peruvianum chacon restores homeostasis impaired by restraint stress", Phytother Res . 2004 Jun;18(6):471-4. doi: 10.1002/ptr.1455.. https://pubmed.ncbi.nlm.nih.gov/15287072/
  • 20. G. F. Gonzales,A. Córdova,K. Vega,A. Chung,A. Villena,C. Góñez,S. Castillo, "Effect of Lepidium meyenii (MACA) on sexual desire and its absent relationship with serum testosterone levels in adult healthy men", Journal of Andrology. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1439-0272.2002.00519.x
  • 21. Byung-Cheul Shin, Myeong Soo Lee, Eun Jin Yang, Hyun-Suk Lim, Edzard Ernst, "Maca (L. meyenii) for improving sexual function: a systematic review", BMC Complement Altern Med . 2010 Aug 6;10:44. doi: 10.1186/1472-6882-10-44.. https://pubmed.ncbi.nlm.nih.gov/20691074/
  • 22. José Manuel Lozano Sánchez, Zoraida Axtle, Julio Aviles, Héctor Salvador Godoy Morales, Paola Berenice Merchand Álvarez, Ricardo Mera Mejía, Luis Felipe Montaño Estrada, Erika Patricia Rendón Huerta, "Peruvian Maca and Possible Impact on Fertility", Journal of Nutritional Health & Food Engineering. https://www.researchgate.net/publication/317569911_Peruvian_Maca_and_Possible_Impact_on_Fertility
  • 23. Hongkang Zhu, Wenqian Xu, Ning Wang, Wenhao Jiang, Yuliang Cheng, Yahui Guo, Weirong Yao, Bin Hu, Peng Du and He Qian, "Anti-fatigue effect of Lepidium meyenii Walp. (Maca) on preventing mitochondria-mediated muscle damage and oxidative stress in vivo and vitro†", Journal of Food & Function. https://pubs.rsc.org/en/content/articlelanding/2021/fo/d1fo00383f/unauth
  • 24. Mark Stone, Alvin Ibarra, Marc Roller, Andrea Zangara, Emma Stevenson, "A pilot investigation into the effect of maca supplementation on physical activity and sexual desire in sportsmen", J Ethnopharmacol . 2009 Dec 10;126(3):574-6. doi: 10.1016/j.jep.2009.09.012. Epub 2009 Sep 23.. https://pubmed.ncbi.nlm.nih.gov/19781622/
  • 25. Gustavo F Gonzales, Sara Miranda, Jessica Nieto, Gilma Fernández, Sandra Yucra, Julio Rubio, Pedro Yi & Manuel Gasco, "Red maca (Lepidium meyenii) reduced prostate size in rats", Reprod Biol Endocrinol 3, 5 (2005). https://doi.org/10.1186/1477-7827-3-5. https://rbej.biomedcentral.com/articles/10.1186/1477-7827-3-5
  • 26. C Gonzales, J Leiva-Revilla, J Rubio, M Gasco, G F Gonzales, "Effect of red maca (Lepidium meyenii) on prostate zinc levels in rats with testosterone-induced prostatic hyperplasia", Andrologia . 2012 May;44 Suppl 1:362-9. doi: 10.1111/j.1439-0272.2011.01190.x. Epub 2011 Jul 18.. https://pubmed.ncbi.nlm.nih.gov/21762188/
  • 27. G. F. Gonzales,A. Córdova,K. Vega,A. Chung,A. Villena,C. Góñez,S. Castillo, "Effect of Lepidium meyenii (MACA) on sexual desire and its absent relationship with serum testosterone levels in adult healthy men", Journal of Andrology. https://onlinelibrary.wiley.com/doi/full/10.1046/j.1439-0272.2002.00519.x
  • 28. Y Ohta, N Kawate, T Inaba, H Morii, K Takahashi, H Tamada, "Feeding hydroalcoholic extract powder of Lepidium meyenii (maca) enhances testicular gene expression of 3β-hydroxysteroid dehydrogenase in rats", Andrologia . 2017 Dec;49(10). doi: 10.1111/and.12792. Epub 2017 Mar 6.. https://pubmed.ncbi.nlm.nih.gov/28261840/
  • 29. Ángel Rodríguez-Huamán, Sandra Casimiro-Gonzales, Jorge Antonio Chávez-Pérez, Carla Gonzales-Arimborgo, Richard Cisneros-Fernández, Luis Ángel Aguilar-Mendoza, Gustavo F Gonzales, "Antioxidant and neuroprotector effect of Lepidium meyenii (maca) methanol leaf extract against 6-hydroxy dopamine (6-OHDA)-induced toxicity in PC12 cells", Toxicol Mech Methods . 2017 May;27(4):279-285. doi: 10.1080/15376516.2016.1275908. Epub 2017 Jan 8.. https://pubmed.ncbi.nlm.nih.gov/28007001/
  • 30. Bárbara Teixeira, António Marques, Cristina Ramos, Maria Carmo Serrano, Olívia Matos, Nuno R Neng, José Nogueira, Jorge M. A. Saraiva, Maria Leonor Nunes, "Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil", Journal of the Science of Food and Agriculture 93(11) DOI:10.1002/jsfa.6089. https://www.researchgate.net/publication/236104725_Chemical_composition_and_bioactivity_of_different_oregano_Origanum_vulgare_extracts_and_essential_oil
  • 31. Wesam Kooti, Zahra Hasanzadeh-Noohi, Naim Sharafi-Ahvazi, Majid Asadi-Samani, Damoon Ashtary-Larky, "Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa)", Chin J Nat Med . 2016 Oct;14(10):732-745. doi: 10.1016/S1875-5364(16)30088-7. Epub 2016 Oct 31.. https://pubmed.ncbi.nlm.nih.gov/28236403/
  • 32. Łukasz Łuczaj & Wojciech M Szymański, "Wild vascular plants gathered for consumption in the Polish countryside: a review.", Journal of Ethnobiology and Ethnomedicine volume 3, Article number: 17 (2007). https://ethnobiomed.biomedcentral.com/articles/10.1186/1746-4269-3-17
  • 33. IKHLAS A. KHAN, EHAB A. ABOURASHED, "Encyclopedia of Common Natural Ingredients Used in Food, Drugs and Cosmetics.", John Wiley & Sons, Inc., Hoboken, New Jersey. https://naturalingredient.org/wp/wp-content/uploads/leungs-encyclopedia-of-common-natural-ingredients-3rd-edition.pdf
  • 34. Adom MB, Taher M, Mutalabisin MF, Amri MS, Abdul Kudos MB, Wan Sulaiman MWA, Sengupta P, Susanti D, "Chemical constituents and medical benefits of Plantago major.", Biomedecine & Pharmacotherapie, 10 Oct 2017, 96:348-360 DOI: 10.1016/j.biopha.2017.09.152 PMID: 29028587. https://europepmc.org/article/med/29028587#similar-articles
  • 35. ZOT Organic, "What is Licorice?", General Info. https://zotorganic.com/information/licorice/#:~:text=The%20plant%20is%20prized%20for,shrub%2C%20is%20officially%20a%20weed.
  • 36. Dalia Akramiene, Anatolijus Kondrotas, Janina Didziapetriene, Egidijus Kevelaitis, "Effects of beta-glucans on the immune system", Medicina (Kaunas) . 2007;43(8):597-606.. https://pubmed.ncbi.nlm.nih.gov/17895634/
  • 37. R C Rosen, "Prevalence and risk factors of sexual dysfunction in men and women", Curr Psychiatry Rep . 2000 Jun;2(3):189-95. doi: 10.1007/s11920-996-0006-2.. https://pubmed.ncbi.nlm.nih.gov/11122954/
  • 38. Natália da Silva Leitão Peres, Letícia Cabrera Parra Bortoluzzi, Leila Larisa Medeiros Marques, Maysa Formigoni, Renata Hernandez Barros Fuchs, Adriana Aparecida Droval, Flávia Aparecida Reitz Cardoso, "Medicinal effects of Peruvian maca (Lepidium meyenii): a review", Food Funct . 2020 Jan 29;11(1):83-92. doi: 10.1039/c9fo02732g.. https://pubmed.ncbi.nlm.nih.gov/31951246/
  • 39. Nicole A Brooks, Gisela Wilcox, Karen Z Walker, John F Ashton, Marc B Cox, Lily Stojanovska, "Beneficial effects of Lepidium meyenii (Maca) on psychological symptoms and measures of sexual dysfunction in postmenopausal women are not related to estrogen or androgen content", Menopause . 2008 Nov-Dec;15(6):1157-62. doi: 10.1097/gme.0b013e3181732953.. https://pubmed.ncbi.nlm.nih.gov/18784609/
  • 40. Maria Rosales-Hartshorn*, "Maca: Botanical Medicine from the Andes", Adv Food Technol Nutr Sci Open J. 2015; 1(2): e1-e6. doi: 10.17140/AFTNSOJ-1-e001. https://www.openventio.org/Volume1-Issue2/Maca-Botanical-Medicine-from-the-Andes-AFTNSOJ-1-e001.pdf
  • 41. Sánchez JML, Serrano ZA, Durán JA, Morales HSG, Álvarez PBM (2017), "Peruvian Maca and Possible Impact on Fertility", J Nutr Health Food Eng 6(5): 00217. DOI: 10.15406/jnhfe.2017.06.00217. https://www.researchgate.net/profile/Jose-Manuel-Lozano-Sanchez/publication/317569911_Peruvian_Maca_and_Possible_Impact_on_Fertility/links/59494b03aca272a30c6cae11/Peruvian-Maca-and-Possible-Impact-on-Fertility.pdf
  • 42. Leila Mazaheri Nia, Mina Iravani, Parvin Abedi, Bahman Cheraghian, "Effect of Zinc on Testosterone Levels and Sexual Function of Postmenopausal Women: A Randomized Controlled Trial", J Sex Marital Ther . 2021;47(8):804-813. doi: 10.1080/0092623X.2021.1957732. Epub 2021 Jul 27.. https://pubmed.ncbi.nlm.nih.gov/34311679/
  • 43. G. F. Gonzales,A. Córdova,K. Vega,A. Chung,A. Villena,C. Góñez,S. Castillo, "Effect of Lepidium meyenii (MACA) on sexual desire and its absent relationship with serum testosterone levels in adult healthy men", Journal of Andrology. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1439-0272.2002.00519.x
  • 44. Byung-Cheul Shin 1, Myeong Soo Lee, Eun Jin Yang, Hyun-Suk Lim, Edzard Ernst, "Maca (L. meyenii) for improving sexual function: a systematic review", BMC Complement Altern Med . 2010 Aug 6;10:44. doi: 10.1186/1472-6882-10-44.. https://pubmed.ncbi.nlm.nih.gov/20691074/
  • 45. Ghanbarali Raeis Jalali, Jamshid Roozbeh, Azam Mohammadzadeh, Maryam Sharifian, Mohammad Mahdi Sagheb, Alireza Hamidian Jahromi, Sanaz Shabani, Fariborz Ghaffarpasand, Raha Afshariani, "Impact of oral zinc therapy on the level of sex hormones in male patients on hemodialysis", Ren Fail . 2010 May;32(4):417-9. doi: 10.3109/08860221003706958.. https://pubmed.ncbi.nlm.nih.gov/20446777/
  • 46. Tahoora Shomali, Mahnaz Taherianfard, Maryam Dalvand, Fatemeh Namazi, "Effect of pharmacological doses of niacin on testicular structure and function in normal and diabetic rats", Andrologia . 2018 Dec;50(10):e13142. doi: 10.1111/and.13142. Epub 2018 Sep 6.. https://pubmed.ncbi.nlm.nih.gov/30191583/
  • 47. Gonzales G. F., Cordova A., Gonzales C., Chung A., Vega K., Villena A., "Lepidium meyenii (Maca) improved semen parameters in adult men.", Asian Journal of Andrology. 2001;3(4):301–303.. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411442/#B19
  • 48. Bogani P., Simonini F., Iriti M., et al., "Lepidium meyenii (Maca) does not exert direct androgenic activities.", Journal of Ethnopharmacology. 2006;104(3):415–417. doi: 10.1016/j.jep.2005.09.028.. ncbi.nlm.nih.gov/pmc/articles/PMC4411442/#B27
  • 49. Gonzalez G. F., Córdova A., Vega K., Chung A., Villena A., Góñez C., "Effect of Lepidium meyenii (Maca), a root with aphrodisiac and fertility-enhancing propeties, on serum reproductive hormone levels in adult healthy men.", Journal of Endocrinology. 2003;176(1):163–168. doi: 10.1677/joe.0.1760163.. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411442/#B28
  • 50. Christina M. Dording , * Pamela J. Schettler, Elizabeth D. Dalton, Susannah R. Parkin, Rosemary S. W. Walker, Kara B. Fehling, Maurizio Fava, and David Mischoulon, "A Double-Blind Placebo-Controlled Trial of Maca Root as Treatment for Antidepressant-Induced Sexual Dysfunction in Women", Journal List Evid Based Complement Alternat Med v.2015; 2015 PMC4411442. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411442/
  • 51. Srikugan L., Sankaralingam A., McGowan B., "First case report of testosterone assay-interference in a female taking maca (Lepidium meyenii) BMJ Case Reports.", 2011 doi: 10.1136/bcr.01.2011.3781.. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411442/#B26
  • 52. Olivia Remes,Carol Brayne,Rianne van der Linde,Louise Lafortune, "A systematic review of reviews on the prevalence of anxiety disorders in adult populations", Journal of Brain and Behavior, 05 June 2016. https://onlinelibrary.wiley.com/doi/10.1002/brb3.497
  • 53. Rohit Verma, Yatan Pal Singh Balhara, and Chandra Shekhar Gupta, "Gender differences in stress response: Role of developmental and biological determinants", Journal List Ind Psychiatry J v.20(1); Jan-Jun 2011 PMC3425245. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425245/
  • 54. Mohammad Hossein Mirjalili, Elisabeth Moyano, Mercedes Bonfill, Rosa M Cusido, Javier Palazón, "Steroidal lactones from Withania somnifera, an ancient plant for novel medicine", Molecules . 2009 Jul 3;14(7):2373-93.. https://pubmed.ncbi.nlm.nih.gov/19633611/
  • 55. R C Rosen, "Prevalence and risk factors of sexual dysfunction in men and women", Curr Psychiatry Rep . 2000 Jun;2(3):189-95. DOI: 10.1007/s11920-996-0006-2.. https://pubmed.ncbi.nlm.nih.gov/11122954/
  • 56. Swati Dongre, Deepak Langade, Sauvik Bhattacharyya, "Efficacy and Safety of Ashwagandha (Withania somnifera) Root Extract in Improving Sexual Function in Women: A Pilot Study", Biomed Res Int . 2015;2015:284154. doi: 10.1155/2015/284154.. https://pubmed.ncbi.nlm.nih.gov/26504795/
  • 57. UT NEWS, "Stress Hormone Blocks Testosterone’s Effects, Study Shows", Journal of Science and Technology. https://news.utexas.edu/2010/09/27/stress-hormone-blocks-testosterones-effects-study-shows/
  • 58. Rashad, N.M., Samir, G.M., "Prevalence, risks, and comorbidity of thyroid dysfunction: a cross-sectional epidemiological study", Egypt J Intern Med 31, 635–641 (2019). https://ejim.springeropen.com/articles/10.4103/ejim.ejim_22_19
  • 59. Cleveland Clinic, "Thyroid: What It Is, Function and Problems", Journal of Body Systems & Organs. https://my.clevelandclinic.org/health/body/23188-thyroid
  • 60. Sharma AK, Basu I, Singh S., "Efficacy and Safety of Ashwagandha Root Extract in Subclinical Hypothyroid Patients: A Double-Blind, Randomized Placebo-Controlled Trial", J Altern Complement Med. 2018 Mar;24(3):243-248. doi: 10.1089/acm.2017.0183. Epub 2017 Aug 22. PMID: 28829155.. https://pubmed.ncbi.nlm.nih.gov/28829155/
  • 61. Chandrasekhar K, Kapoor J, Anishetty S., "A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults", Indian J Psychol Med. 2012 Jul;34(3):255-62. doi: 10.4103/0253-7176.106022. PMID: 23439798; PMCID: PMC3573577.. https://pubmed.ncbi.nlm.nih.gov/23439798/
  • 62. Stephens MA, Wand G., "Stress and the HPA axis: role of glucocorticoids in alcohol dependence", Alcohol Res. 2012;34(4):468-83. PMID: 23584113; PMCID: PMC3860380.. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860380/
  • 63. Centers for Disease Control and Prevention, "1 in 3 adults don’t get enough sleep", CDC.gov. https://www.cdc.gov/media/releases/2016/p0215-enough-sleep.html
  • 64. Centers for Disease Control and Prevention, "Sleep and Sleep Disorders", CDC.gov. https://www.cdc.gov/sleep/data_statistics.html
  • 65. Krishnan V, Collop NA., "Gender differences in sleep disorders", Curr Opin Pulm Med. 2006 Nov;12(6):383-9. doi: 10.1097/01.mcp.0000245705.69440.6a. PMID: 17053485.. https://pubmed.ncbi.nlm.nih.gov/17053485/
  • 66. Danielle Pacheco, Ealena Callender, "Women and Sleep", Sleep Foundation. https://www.sleepfoundation.org/women-sleep
  • 67. Langade D, Thakare V, Kanchi S, Kelgane S., "Clinical evaluation of the pharmacological impact of ashwagandha root extract on sleep in healthy volunteers and insomnia patients: A double-blind, randomized, parallel-group, placebo-controlled study", J Ethnopharmacol. 2021 Jan 10;264:113276. doi: 10.1016/j.jep.2020.113276. Epub 2020 Aug 17. PMID: 32818573.. https://pubmed.ncbi.nlm.nih.gov/32818573/
  • 68. Abhijit Deshpande, Nushafreen Irani, Ratna Balkrishnan, Irin Rosanna Benny, "A randomized, double blind, placebo controlled study to evaluate the effects of ashwagandha (Withania somnifera) extract on sleep quality in healthy adults", Sleep Medicine, Volume 72, 2020, Pages 28-36, ISSN 1389-9457,. https://www.sciencedirect.com/science/article/abs/pii/S1389945720301246
  • 69. Mahesh K. Kaushik, Sunil C. Kaul, Renu Wadhwa, Masashi Yanagisawa, Yoshihiro Urade, "Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction", plos.org DOI:10.1371/journal.pone.0172508. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172508#abstract0
  • 70. Auddy B, Hazra J, Mitra A, et al., "A standardized Withania Somnifera extract significantly reduces stress-related parameters in chronically stressed humans: a double-blind, randomized, placebo-controlled study", J Am Neutraceut Assoc 2008;11:50–6.. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750292/#R20
  • 71. Andrade C, Aswath A, Chaturvedi SK, et al., "A double-blind, placebo-controlled evaluation of the anxiolytic efficacy ff an ethanolic extract of withania somnifera", Indian J Psychiatry 2000;42:295–301.. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750292/#R18
  • 72. Fries E, Dettenborn L, Kirschbaum C., "The cortisol awakening response (CAR): facts and future directions", Int J Psychophysiol. 2009 Apr;72(1):67-73. doi: 10.1016/j.ijpsycho.2008.03.014. Epub 2008 Sep 30. PMID: 18854200.. https://pubmed.ncbi.nlm.nih.gov/18854200/
  • 73. Nicolas C. Nicolaides, Alexandros N. Vgontzas, Ilia Kritikou, George Chrousos Kenneth R Feingold, Bradley Anawalt, Alison Boyce, George Chrousos, Wouter W de Herder, Ketan Dhatariya, Kathleen Dungan, Jerome M Hershman, Johannes Hofland, Sanjay Kalra, Gregory Kaltsas, Christian Koch, Peter Kopp, Márta Korbonits, Christopher S Kovacs, Wendy Kuohung, Blandine Laferrère, Miles Levy, Elizabeth A McGee, Robert McLachlan, John E Morley, Maria New, Jonathan Purnell, Rakesh Sahay, Frederick Singer, Mark A Sperling, Constantine A Stratakis, Dace L Trence, Don P Wilson, "HPA Axis and Sleep", In: Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. 2020 Nov 24. PMID: 25905298 Bookshelf ID: NBK279071. https://pubmed.ncbi.nlm.nih.gov/25905298/
  • 74. Bhattacharya SK, Bhattacharya A, Sairam K, Ghosal S., "Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: an experimental study", Phytomedicine. 2000 Dec;7(6):463-9. doi: 10.1016/S0944-7113(00)80030-6. PMID: 11194174.. https://pubmed.ncbi.nlm.nih.gov/11194174/
  • 75. Gopal S, Ajgaonkar A, Kanchi P, Kaundinya A, Thakare V, Chauhan S, Langade D., "Effect of an ashwagandha (Withania Somnifera) root extract on climacteric symptoms in women during perimenopause: A randomized, double-blind, placebo-controlled study", J Obstet Gynaecol Res. 2021 Dec;47(12):4414-4425. doi: 10.1111/jog.15030. Epub 2021 Sep 22. PMID: 34553463.. https://pubmed.ncbi.nlm.nih.gov/34553463/
  • 76. Chandrasekhar K, Kapoor J, Anishetty S., "A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults.", Indian J Psychol Med. 2012 Jul;34(3):255-62. doi: 10.4103/0253-7176.106022. PMID: 23439798; PMCID: PMC3573577.. https://pubmed.ncbi.nlm.nih.gov/23439798/
  • 77. Khedgikar V, Kushwaha P, Gautam J, Verma A, Changkija B, Kumar A, Sharma S, Nagar GK, Singh D, Trivedi PK, Sangwan NS, Mishra PR, Trivedi R., "Withaferin A: a proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone", Cell Death Dis. 2013 Aug 22;4(8):e778. doi: 10.1038/cddis.2013.294. PMID: 23969857; PMCID: PMC3763455.. https://pubmed.ncbi.nlm.nih.gov/23969857/
  • 78. Sandi C., "Stress and cognition", Wiley Interdiscip Rev Cogn Sci. 2013 May;4(3):245-261. doi: 10.1002/wcs.1222. Epub 2013 Jan 22. PMID: 26304203.. https://pubmed.ncbi.nlm.nih.gov/26304203/
  • 79. Killgore WD., "Effects of sleep deprivation on cognition", Prog Brain Res. 2010;185:105-29. doi: 10.1016/B978-0-444-53702-7.00007-5. PMID: 21075236.. https://pubmed.ncbi.nlm.nih.gov/21075236/
  • 80. Ali SA, Begum T, Reza F., "Hormonal Influences on Cognitive Function", Malays J Med Sci. 2018 Jul;25(4):31-41. doi: 10.21315/mjms2018.25.4.3. Epub 2018 Aug 30. PMID: 30914845; PMCID: PMC6422548.. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6422548/
  • 81. Choudhary D, Bhattacharyya S, Bose S., "Efficacy and Safety of Ashwagandha (Withania somnifera (L.) Dunal) Root Extract in Improving Memory and Cognitive Functions", J Diet Suppl. 2017 Nov 2;14(6):599-612. doi: 10.1080/19390211.2017.1284970. Epub 2017 Feb 21. PMID: 28471731.. https://pubmed.ncbi.nlm.nih.gov/28471731/
  • 82. Dar NJ, MuzamilAhmad., "Neurodegenerative diseases and Withania somnifera (L.): An update.", J Ethnopharmacol. 2020 Jun 28;256:112769. doi: 10.1016/j.jep.2020.112769. Epub 2020 Mar 30. PMID: 32240781.. https://pubmed.ncbi.nlm.nih.gov/32240781/
  • 83. Bonilla DA, Moreno Y, Gho C, Petro JL, Odriozola-Martínez A, Kreider RB., "Effects of Ashwagandha (Withania somnifera) on Physical Performance: Systematic Review and Bayesian Meta-Analysis", J Funct Morphol Kinesiol. 2021 Feb 11;6(1):20. doi: 10.3390/jfmk6010020. PMID: 33670194; PMCID: PMC8006238.. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8006238/
  • 84. GRAHAM BINDER, "Researchers with the College of AGNR study nutrient-packed microgreens", College of Agriculture & Natural Resources, September 6, 2012. https://agnr.umd.edu/news/mighty-microgreens
  • 85. GAO, "While Levels in Clothing Generally Appear to Be Low, Allergic Contact Dermatitis Is a Health Issue for Some People", United States Government Accountability Office, Report to Congressional Committees, August 2010. https://www.gao.gov/assets/gao-10-875.pdf
  • 86. Dongre S, Langade D, Bhattacharyya S., "Efficacy and Safety of Ashwagandha (Withania somnifera) Root Extract in Improving Sexual Function in Women: A Pilot Study.", Biomed Res Int. 2015;2015:284154. doi: 10.1155/2015/284154. Epub 2015 Oct 4. PMID: 26504795; PMCID: PMC4609357.. https://pubmed.ncbi.nlm.nih.gov/26504795/
  • 87. Chauhan, S, Srivastava, MK, Pathak, AK., "Effect of standardized root extract of ashwagandha (Withania somnifera) on well-being and sexual performance in adult males: a randomized controlled trial", Health Sci Rep. 2022; 5:e741. doi:10.1002/hsr2.741. https://onlinelibrary.wiley.com/doi/10.1002/hsr2.741
  • 88. Langade D, Thakare V, Kanchi S, Kelgane S., "Clinical evaluation of the pharmacological impact of ashwagandha root extract on sleep in healthy volunteers and insomnia patients: A double-blind, randomized, parallel-group, placebo-controlled study", J Ethnopharmacol. 2021 Jan 10;264:113276. doi: 10.1016/j.jep.2020.113276. Epub 2020 Aug 17. PMID: 32818573.. https://pubmed.ncbi.nlm.nih.gov/32818573/
  • 89. Abhijit Deshpande, Nushafreen Irani, Ratna Balkrishnan, Irin Rosanna Benny,, "A randomized, double blind, placebo controlled study to evaluate the effects of ashwagandha (Withania somnifera) extract on sleep quality in healthy adults,", Sleep Medicine, Volume 72, 2020, Pages 28-36, ISSN 1389-9457, https://doi.org/10.1016/j.sleep.2020.03.012.. https://www.sciencedirect.com/science/article/abs/pii/S1389945720301246
  • 90. Bhattacharya SK, Bhattacharya A, Sairam K, Ghosal S, "Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: an experimental study", Phytomedicine. 2000 Dec;7(6):463-9. doi: 10.1016/S0944-7113(00)80030-6. PMID: 11194174.. https://pubmed.ncbi.nlm.nih.gov/11194174/
  • 91. Rashad, N.M., Samir, G.M., "Prevalence, risks, and comorbidity of thyroid dysfunction: a cross-sectional epidemiological study", Egypt J Intern Med 31, 635–641 (2019). https://doi.org/10.4103/ejim.ejim_22_19. https://ejim.springeropen.com/articles/10.4103/ejim.ejim_22_19
  • 92. Durg S, Bavage S, Shivaram SB, "Withania somnifera (Indian ginseng) in diabetes mellitus: A systematic review and meta-analysis of scientific evidence from experimental research to clinical application", Phytother Res. 2020 May;34(5):1041-1059. doi: 10.1002/ptr.6589. Epub 2020 Jan 23. PMID: 31975514.. https://pubmed.ncbi.nlm.nih.gov/31975514/
  • 93. ASRM, American Society for Reproductive Medicine, "In approximately 40 percent of infertile couples, the male partner is either the sole cause or a contributing cause of infertility", Reproductivefacts.org/resources/infographic-gallery. https://www.reproductivefacts.org/resources/infographic-gallery/images/in-approximately-40-percent-of-infertile-couples-the-male-partner-is-either-the-sole-cause-or-a-contributing-cause-of-infertility/
  • 94. Tiwari S, Gupta SK, Pathak AK, "A double-blind, randomized, placebo-controlled trial on the effect of Ashwagandha (Withania somnifera dunal.) root extract in improving cardiorespiratory endurance and recovery in healthy athletic adults", J Ethnopharmacol. 2021 May 23;272:113929. doi: 10.1016/j.jep.2021.113929. Epub 2021 Feb 15. PMID: 33600918.. https://pubmed.ncbi.nlm.nih.gov/33600918/
  • 95. Chandrasekhar K, Kapoor J, Anishetty S, "A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults", Indian J Psychol Med. 2012 Jul;34(3):255-62. doi: 10.4103/0253-7176.106022. PMID: 23439798; PMCID: PMC3573577. https://pubmed.ncbi.nlm.nih.gov/23439798/
  • 96. Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazón J, "Steroidal lactones from Withania somnifera, an ancient plant for novel medicine", Molecules. 2009 Jul 3;14(7):2373-93. doi: 10.3390/molecules14072373. PMID: 19633611; PMCID: PMC6255378. https://pubmed.ncbi.nlm.nih.gov/19633611/
  • 97. Carnegie Mellon University, "Stress Contributes To Range Of Chronic Diseases, Review Shows", ScienceDaily. ScienceDaily, 10 October 2007. https://www.sciencedaily.com/releases/2007/10/071009164122.htm
  • 98. Bremner JD, "Does stress damage the brain?", Biol Psychiatry. 1999 Apr 1;45(7):797-805. doi: 10.1016/s0006-3223(99)00009-8. PMID: 10202566. https://pubmed.ncbi.nlm.nih.gov/10202566/
  • 99. Kalmbach DA, Anderson JR, Drake CL, "The impact of stress on sleep: Pathogenic sleep reactivity as a vulnerability to insomnia and circadian disorders", J Sleep Res. 2018 Dec;27(6):e12710. doi: 10.1111/jsr.12710. Epub 2018 May 24. PMID: 29797753; PMCID: PMC7045300. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045300/
  • 100. National Institutes of Health, "Poor Sleep Linked With Higher Blood Sugar", newsinhealth.nih.gov/Health Capsule/ July 2022. https://newsinhealth.nih.gov/2020/07/poor-sleep-linked-higher-blood-sugar
  • 101. Winston D, Maimes S, "Adaptogens: Herbs for Strength, Stamina, and Stress Relief", Rochester: Inner Traditions/Bear & Co. Vol. 48. Rochester: Inner Traditions/Bear & Co; 2007; p. 53. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6979308/#REF8
  • 102. Bhatnagar M, Sharma D, Salvi M, "Neuroprotective effects of Withania somnifera dunal.: A possible mechanism", Neurochem Res. 2009 Nov;34(11):1975-83. doi: 10.1007/s11064-009-9987-7. Epub 2009 May 15. PMID: 19444606. https://pubmed.ncbi.nlm.nih.gov/19444606/
  • 103. Salve J, Pate S, Debnath K, Langade D, "Adaptogenic and Anxiolytic Effects of Ashwagandha Root Extract in Healthy Adults: A Double-blind, Randomized, Placebo-controlled Clinical Study", Cureus. 2019 Dec 25;11(12):e6466. doi: 10.7759/cureus.6466. PMID: 32021735; PMCID: PMC6979308. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6979308/
  • 104. Gopukumar, K.Thanawala, S. Somepalli, V. Rao Sathyanaryana, T. S. Thamatam, V.B. Chauhan, S., "Efficacy and Safety of Ashwagandha Root Extract on Cognitive Functions in Healthy, Stressed Adults: A Randomized, Double-Blind, Placebo-Controlled Study", Evidence-Based Complementary and Alternative Medicine/ Volume 2021/Article ID 8254344. https://www.hindawi.com/journals/ecam/2021/8254344/
  • 105. Choudhary D, Bhattacharyya S, Bose S., "Efficacy and Safety of Ashwagandha (Withania somnifera (L.) Dunal) Root Extract in Improving Memory and Cognitive Functions", J Diet Suppl. 2017 Nov 2;14(6):599-612. doi: 10.1080/19390211.2017.1284970. Epub 2017 Feb 21. PMID: 28471731. https://pubmed.ncbi.nlm.nih.gov/28471731/
  • 106. Dar NJ, MuzamilAhmad, "Neurodegenerative diseases and Withania somnifera (L.): An update", J Ethnopharmacol. 2020 Jun 28;256:112769. doi: 10.1016/j.jep.2020.112769. Epub 2020 Mar 30. PMID: 32240781. https://pubmed.ncbi.nlm.nih.gov/32240781/
  • 107. LULU XIE, HONGYI KANG, QIWU XU, MICHAEL J. CHEN, YONGHONG LIAO, MEENAKSHISUNDARAM THIYAGARAJAN, JOHN O’DONNELL, DANIEL J. CHRISTENSEN, CHARLES NICHOLSON, JEFFREY J. ILIFF, TAKAHIRO TAKANO, RASHID DEANE, AND MAIKEN NEDERGAARD, "Sleep Drives Metabolite Clearance from the Adult Brain", SCIENCE 18 Oct 2013 Vol 342, Issue 6156 pp. 373-377 DOI: 10.1126/science.1241224. https://www.science.org/doi/10.1126/science.1241224
  • 108. Bhatnagar M, Sharma D, Salvi M, "Neuroprotective effects of Withania somnifera dunal.: A possible mechanism", Neurochem Res. 2009 Nov;34(11):1975-83. doi: 10.1007/s11064-009-9987-7. Epub 2009 May 15. PMID: 19444606. https://pubmed.ncbi.nlm.nih.gov/19444606/
  • 109. Baker C, Kirby JB, O'Connor J, Lindsay KG, Hutchins A, Harris M, "The Perceived Impact of Ashwagandha on Stress, Sleep Quality, Energy, and Mental Clarity for College Students: Qualitative Analysis of a Double-Blind Randomized Control Trial", J Med Food. 2022 Aug 18. doi: 10.1089/jmf.2022.0042. Epub ahead of print. PMID: 35984870. https://pubmed.ncbi.nlm.nih.gov/35984870/
  • 110. Nayely Leyva-López, et al, "Essential Oils of Oregano: Biological Activity beyond Their Antimicrobial Properties", https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152729/
  • 111. S. Santoya et al, "Supercritical carbon dioxide extraction of compounds with antimicrobial activity from Origanum vulgare L.: determination of optimal extraction parameters", https://pubmed.ncbi.nlm.nih.gov/16496578/
  • 112. Snigdha Sacena et al, "Evaluation of Systemic Oxidative Stress in Patients with Premature Canities and Correlation of Severity of Hair Graying with the Degree of Redox Imbalance", https://pubmed.ncbi.nlm.nih.gov/32549695/
  • 113. Yunes Panahi et al, "Rosemary oil vs minoxidil 2% for the treatment of androgenetic alopecia: a randomized comparative trial", https://pubmed.ncbi.nlm.nih.gov/25842469/
  • 114. Stephen C Barker & Phillip M Altman, "An ex vivo, assessor blind, randomised, parallel group, comparative efficacy trial of the ovicidal activity of three pediculicides after a single application - melaleuca oil and lavender oil, eucalyptus oil and lemon tea tree oil, and a "suffocation" pediculicide", https://bmcdermatol.biomedcentral.com/articles/10.1186/1471-5945-11-14
  • 115. C Hay et al, "Randomized trial of aromatherapy. Successful treatment for alopecia areata", https://pubmed.ncbi.nlm.nih.gov/9828867/
  • 116. "Synaptic Pruning", https://www.sciencedirect.com/topics/veterinary-science-and-veterinary-medicine/synaptic-pruning
  • 117. CeJpeK, K, "“Antioxidant Activity in Variously Prepared Elderberry Foods and Supplements.”", Czech J. Food Sci. Vol. 27, 2009, Special Issue. https://www.agriculturejournals.cz/publicFiles/07578.pdf
  • 118. Porter RS, Bode RF, "A Review of the Antiviral Properties of Black Elder (Sambucus nigra L.) Products", Phytother Res. 2017 Apr;31(4):533-554. doi: 10.1002/ptr.5782. Epub 2017 Feb 15. PMID: 28198157..
  • 119. Deepak Langade, Subodh Kanchi, Jaising Salve, Khokan Debnath, and Dhruv Ambegaokar, "Efficacy and Safety of Ashwagandha (Withania somnifera) Root Extract in Insomnia and Anxiety: A Double-blind, Randomized, Placebo-controlled Study", Cureus. 2019 Sep; 11(9): e5797. Published online 2019 Sep 28. doi: 10.7759/cureus.5797 PMCID: PMC6827862PMID: 31728244. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827862/
  • 120. Mohammad Hossein Mirjalili, Elisabeth Moyano, Mercedes Bonfill, Rosa M Cusido, Javier Palazón, "Steroidal lactones from Withania somnifera, an ancient plant for novel medicine", Molecules. 2009 Jul 3;14(7):2373-93. doi: 10.3390/molecules14072373.. https://pubmed.ncbi.nlm.nih.gov/19633611/
  • 121. Deepak Langade, Subodh Kanchi, Jaising Salve, Khokan Debnath, Dhruv Ambegaokar, "Efficacy and Safety of Ashwagandha (Withania somnifera) Root Extract in Insomnia and Anxiety: A Double-blind, Randomized, Placebo-controlled Study", Cureus . 2019 Sep 28;11(9):e5797. doi: 10.7759/cureus.5797.. https://pubmed.ncbi.nlm.nih.gov/31728244/
  • 122. Biswajit Auddy, PhD1; Jayaram Hazra, PhD2; Achintya Mitra, MD2; Bruce Abedon, PhD3; Shibnath Ghosal, PhD1, "A Standardized Withania Somnifera Extract Significantly Reduces Stress-Related Parameters in Chronically Stressed Humans: A Double-Blind, Randomized, Placebo-Controlled Study", JANA Vol 11, No.1 2008. https://blog.priceplow.com/wp-content/uploads/2014/08/withania_review.pdf
  • 123. K Chandrasekhar, Jyoti Kapoor, Sridhar Anishetty, "A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults", Indian J Psychol Med. 2012 Jul;34(3):255-62. doi: 10.4103/0253-7176.106022.. https://pubmed.ncbi.nlm.nih.gov/23439798/
  • 124. Deepak Langade, Vaishali Thakare, Subodh Kanchi, Sunil Kelgane, "Clinical evaluation of the pharmacological impact of ashwagandha root extract on sleep in healthy volunteers and insomnia patients: A double-blind, randomized, parallel-group, placebo-controlled study", Randomized Controlled Trial J Ethnopharmacol. 2021 Jan 10;264:113276.. https://pubmed.ncbi.nlm.nih.gov/32818573/
  • 125. Abhijit Deshpandea, Nushafreen Irania, Ratna BalkrishnanaIrin, Rosanna Bennyb, "A randomized, double blind, placebo controlled study to evaluate the effects of ashwagandha (Withania somnifera) extract on sleep quality in healthy adults", Sleep Medicine Volume 72, August 2020, Pages 28-36. https://www.sciencedirect.com/science/article/abs/pii/S1389945720301246
  • 126. Mahesh K. Kaushik ,Sunil C. Kaul, Renu Wadhwa,Masashi Yanagisawa, Yoshihiro Urade, "Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction", Published: February 16, 2017 https://doi.org/10.1371/journal.pone.0172508. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172508
  • 127. Mahesh K. Kaushik ,Sunil C. Kaul, Renu Wadhwa,Masashi Yanagisawa, Yoshihiro Urade, "Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction", Published: February 16, 2017 https://doi.org/10.1371/journal.pone.0172508. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172508
  • 128. Adrian L. Lopresti, PhD,a,b,∗ Stephen J. Smith, MA,a,b Hakeemudin Malvi, MBBS, MD,c and Rahul Kodgule, MBBSd, "An investigation into the stress-relieving and pharmacological actions of an ashwagandha (Withania somnifera) extract", Medicine (Baltimore). 2019 Sep; 98(37): e17186. Published online 2019 Sep 13. doi: 10.1097/MD.0000000000017186. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750292/#R20
  • 129. Adrian L. Lopresti, PhD,a,b,∗ Stephen J. Smith, MA,a,b Hakeemudin Malvi, MBBS, MD,c and Rahul Kodgule, MBBSd, "An investigation into the stress-relieving and pharmacological actions of an ashwagandha (Withania somnifera) extract", Medicine (Baltimore). 2019 Sep; 98(37): e17186. Published online 2019 Sep 13. doi: 10.1097/MD.0000000000017186. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750292/#R18
  • 130. Nicolas C. Nicolaides, Alexandros N. Vgontzas, Ilia Kritikou, George Chrousos Kenneth R Feingold, Bradley Anawalt, Alison Boyce, George Chrousos, Wouter W de Herder, Ketan Dhatariya, Kathleen Dungan, Jerome M Hershman, Johannes Hofland, Sanjay Kalra, Gregory Kaltsas, Christian Koch, Peter Kopp, Márta Korbonits, Christopher S Kovacs, Wendy Kuohung, Blandine Laferrère, Miles Levy, Elizabeth A McGee, Robert McLachlan, John E Morley, Maria New, Jonathan Purnell, Rakesh Sahay, Frederick Singer, Mark A Sperling, Constantine A Stratakis, Dace L Tren, Don P Wilson, editors., "HPA Axis and Sleep", In: Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. 2020 Nov 24.. https://pubmed.ncbi.nlm.nih.gov/25905298/
  • 131. Eva Fries, Lucia Dettenborn, Clemens Kirschbaum, "The cortisol awakening response (CAR): facts and future directions", Int J Psychophysiol. 2009 Apr;72(1):67-73. doi: 10.1016/j.ijpsycho.2008.03.014. Epub 2008 Sep 30.. https://pubmed.ncbi.nlm.nih.gov/18854200/
  • 132. Nicolas C. Nicolaides, Alexandros N. Vgontzas, Ilia Kritikou, George Chrousos Kenneth R Feingold, Bradley Anawalt, Alison Boyce, George Chrousos, Wouter W de Herder, Ketan Dhatariya, Kathleen Dungan, Jerome M Hershman, Johannes Hofland, Sanjay Kalra, Gregory Kaltsas, Christian Koch, Peter Kopp, Márta Korbonits, Christopher S Kovacs, Wendy Kuohung, Blandine Laferrère, Miles Levy, Elizabeth A McGee, Robert McLachlan, John E Morley, Maria New, Jonathan Purnell, Rakesh Sahay, Frederick Singer, Mark A Sperling, Constantine A Stratakis, Dace L Tren, Don P Wilson, editors., "HPA Axis and Sleep", In: Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. 2020 Nov 24.. https://pubmed.ncbi.nlm.nih.gov/25905298/